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It is well known that when weakly conductive liquids such as hydrocarbons flow within 
tubes they acquire a certain electrical charge [1-4]. As a result the danger of electrical 
discharge and explosion in tubes and reservoirs arises [i, 5]. In connection with this, 
it is of interest to determine the dependence of the maximum electrification current deve- 
loped in flow of a weakly conductive liquid through a tube on the tube dimensions, liquid 
properties, and flow parameters. 

The development of a space charge within the medium is connected with electrochemical 
reactions occurring on the tube surface, in which ions of an impurity with electrolytic nature, 
dissolved in the liquid, participate [2, 4]. Generally speaking, the electrification current, 
i.e., the charge removed by the liquid per unit time from a tube of given length depends on 
the rate constants of the surface reactions. The present study will consider the !Smiting 
case where ions of only one sign participate in the surface reactions and the reactions occur at 
an infinite rate. The electrification current will then be determined by the rate of ion 
supply to the tube surface. In [6] this problem was considered for small-diameter tubes, in 
which the characteristic thickness of the diffusion boundary layer which develops is small in 
comparison to the Debye radius of the liquid. It was shown that in this case in the zeroth 
approximation in the small parameter defined by the ratio of the diffusion boundary-layer 
thickness to the tube radius, the effect of electric field on ion motion can be neglected, 
and the problem reduces to solution of the convective diffusion equation. 

The present study will consider electrification of a liquid when the diffusion boundary- 
layer thickness and the liquid Debye radius are of the same order of magnitude and the effect 
of the electric field developed on ion motion is significant. It will be assumed that the 
liquid's Debye radius r D is small in comparison to the tube radius a, 6 = rD/a << i. Cases 
of complete and slight dissociation of the impurity will be considered~ In the latter case 
it will be assumed that volume electrochemical reactions may occur in the liquid: dissocia- 
tion of impurity molecules occurring at a constant rate and recombination of ions at a rate 
which is assumed proportional to the product of their concentrations. 

It will be shown that in each of the cases considered there exist dimensionless variables 
in which in the zeroth approximation with respect to the parameter 6 the dependence of maxi- 
mum electrification current on problem parameters is describable by a universal curve. The 
form of this curve is obtained numerically for each case. The dependence of maximum elec- 
trification current on tube dimensions, liquid properties, and flow parameters will be 
analyzed. The limits of applicability of the solution obtained will be evaluated. 

I. Formulation of the Problem. We will consider electrification of a weakly conduc- 
tive liquid in a steady state flow within a semiinfinite grounded metallic tube, at the input 
of which the liquid is not charged. We assume that the liquid conductivity is caused by 
dissociation of impurity molecules [2, 3] and that electrification occurs due to oxidation- 
reduction reactions occurring on the inner surface of the tube [2, 4]. We will study the 
limiting case in which ions of only one sign (for definiteness, negative) react on the tube 
walls and the reaction occurs at an infinite rate. 

We will describe the weakly conductive liquid using the model of a multicomponent mixture 
consisting of positive and negative ions, neutral electrolyte molecules, and molecules of the 
nonelectrolytic carrier liquid. We assume that the ion concentrations are much less than the 
carrier liquid concentration, so that the effect of ions on the motion of the medium may be 
neglected, taking the flow as known in solving the electrodynamic hydrodynamics problem. 
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We assume further that the liquid velocity profile is given by the Poiseuille expression, 
while the temperatures of the components are the same, and equal to the temperatures of the 
tube wall. With consideration of these assumptions, the system of equations and boundary 
conditions describing the process of liquid electrification during flow in the tube can be 
written in the form (using cylindrical coordinates x*, r*, with the x* axis directed along 
the tube axis) 

-~ •  r * 2 ~ 0 n :  ~ * * . . . .  + b+ d iv  (n~-E*) , a2 } a - j  = 7k,.n~] - -  n+n_ ) ;  (i.i) 

d i v E * = 4 r ~ e s  ( n + - - n _ ) ,  rot  0; ( 1 . 2 )  

n_+_+ = n o, E ,  ----- 0, x* = 0; ( 1 . 3 )  

On: lz* 
- - D + o - ~ + b + n + E ~ = O ,  =0, E * ~ = 0 ,  r * = a ,  (1.4) 

0 * * 
0L~* n_+, E~ - +  0, x* --~ + oo. 

Here Uma x is the liquid velocity on the tube axis; a is the tube radius; n$, b+, D+ are the 
concentrations and mobility and diffusion coefficients for positive and negative ions; E (Er, 

Ex, 0) is the electric field intensity; kr, n o are the recombination coefficient and equili- 

brium ion concentration; e is the absolute value of the ionic charge; and g is the dielectric 
permittivity of the medium. The parameter ~ is equal to zero for total dissociation and 
unity for weak dissociation. In the latter case the change in concentration of neutral 
electrolyte molecules due to volume reactions can be neglected and the dissociation rate 
assumed constant. For the future we will assume that b+ = b_ = b, D+ = bkTe -• (where k is 

Boltzmann's constant and T is temperature), k r = 8~ebs -I, Langevin's relationship. 

We dedimensionalize Eqs. (i.i), (1.2) and boundary conditions (1.3), (1.4) by introducing 
the following quantities: 

�9 * 0 * 0 
= E, = E,/E,, = 

r = r*/a, x =  x*/(ax3), E ~ = 4~enoe-lrD,: 

E ~ = E~215 r~D = skT/(8~e2no), . 
x~I/3 ~1 = pe-V3 = (D/(aUmax~ , • = 5/ei,  5 = ro/a. 

Here r D is the liquid Debye radius, as I is the characteristic thickness of the diffusion 
boundary layer [6] ; Pe = UmaxaD -I is the diffusion Peclet number. After the dedimensionali- 
zation Eqs. (i.I), (1.2) and boundary conditions (1.3), (1.4) take on the form 

(1.5) 

�9 -6 0 ~ 2 0n! 
+ ~• ~ (n• + (t  - -  r~) ~ 7~ (t  - -  n + n _ ) ;  

(+ a (rE,) + ~• a ) aE, OE x 6 ~ ~7.x.Ex = n + - - n , ~ :  ~z - - 8  ~ ;  ( 1 . 6 )  

n i=l, Er=0, (x=0); (1.7) 

On+ 
- -26-g7-  r + n+E, = 0, n _  = 0, E ,  = 0 (r = i ) ,  ( 1 . 8 )  

o 
~ n . •  E ~ - + 0  ( x - +  + "oo). 

We will study electrification in the initial section of the tube where ez % 6 << 1,  
considering the asymptote of the solution of Eqs. (1.5)-(1.8) as 6 + 0, K - 61~ i = O(I). 
The case E I ~ 0, 6 = 0(I) was studied in [6]. 

2. Approximate Solution of the Problem. We will seek a solution to the problem using 
the method of combining asymptotic expansions [7]. Taking the parameter 6 = 0 in Eqs. (1.5)- 
(1.8) and integrating the system thus obtained for the zeroth approximation of the external 
solution with consideration of the corresponding boundary conditions, we find 
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z?2 = 0, 4)o = 1. (2 .  l )  

Here and below the superscripts (e) and (i) indicate parameters of the external and internal 
solutions, while the subscript 0 indicates that we are considering the zeroth (with respect 
to 6) approximation of the solution. 

To obtain equations and boundary conditions for the internal solution, we substitute in 
Eqs. (1.5)-(1.8) the unknown functions, expressed in terms of series in powers of the parameter 
6. After transformation to the new variables x, y = (i - r)/6 we equate terms having equal 
powers of 6. The equations and boundary conditions for the zeroth approximation appear as 
follows 

V  o  o,_4y = t); ( 2 . 2 )  

~̂(i) (i) 
-~o ~ . . . .  (2 3) Oy --  n+~ Ox Oy ' 

(o ~,(i) n •  0 (x 0); ~ o  = = ( 2 . 4 )  

2 - ~ y  + , o + o ~ o = 0 ,  n~)o O, ~(o 0 (y=O) .  
= ~.~o = (2 5) 

The conditions for merger of the zeroth approximations in the external (flow "core") an 
internal (boundary layer) regions have the form 

+ (2.6)  

I t  i s  e v i d e n t  from Eqs. ( 2 . 2 ) ,  (2 .3 )  and boundary c o n d i t i o n s  ( 2 . 4 ) - ( 2 . 6 )  t h a t  the  f u n c t i o n s  

hi0, ~r0 can be determined independently of the function E , which is then found from the 

second expression of Eq. (2.3) using the last boundary condition of Eq. (2.5). The values 
of the function E (i) on the external boundary of the boundary layer are boundary conditions 

x0 
for determining the zeroth approximation of E x in the external region. 

We note that in the case of weak dissociation of the impurity molecules with a recombi- 
nation coefficient smaller than or of the order of the Langevin coefficient, the condition for 
electrochemical equilibrium in the boundary layer n 2 = n+n* is in general not satisfied. This 

statement follows directly from the form of the electrodiffusion boundary-layer equations, 
Eqs. (2.2), (i.3). 

For total (~ = 0) or weak (~ = i) dissociation of the impurity molecules, we can ob- 
tain an expression for the electrification current J~(L), i.e., the charge carried off by 
the flowing liquid per unit time from a section of tube of length L. This current is ob- 
viously equal but opposite in sign to the current flowing from the tube to ground, the value 
of which can be obtained by integrating the current density ]*= eO an*_/Or* Ir*=a �9 Thus, 

~0n*_ r*=a ekTumax xf,. On(i-)ol 
= -- ( @  " x L  Y~ (L) 2~aeD 0 Or* dx* = (i + 0 ~ j - ~  ly=o dx, = L/(a• ( 2 . 7 )  

0 0 

Equat ions  ( 2 . 2 ) ,  (2 .3 )  a n d b o u n d a r y c o n d i t i o n s  ( 2 . 4 ) - ( 2 . 6 ) ,  which se rve  to  de te rmine  the  
zeroth approximation of the solution in the boundary layer, contain a single parameter ~, 
which (assuming the Langevin dependence of recomination coefficient on mobility and charge of 
the ions and dielectric permittivity of the liquid) takes on two values. In view of this, for 
both total and weak dissociation of the impurity the integral on the right side of the last ex- 
pression of Eq. (2.7) is a universal function of the upper limit, and is independent of the 

parameters. Introducing the notation f ~ ( x ) =  50n_o/Ox(O, (0 x) dx , to the accuracy of terms of the 
0 

order of 5 we can rewrite Eq. (2.7) in the form 
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(where o is the equliibrium conductivity of the liquid). 

The functions FT(x) (7 = O; i) were obtained by numerical solution of Eqs. (2.2)-(2.6). 
Their curves are shown in Fig. I, where L 0 and L I indicate total and weak dissociation, 
respectively. Having a known function Fu it is possible to use Eq. (2.8) to clarify the 
dependence of electrification current on tube dimensions, liquid properties, and flow rate. 
To do this it is convenient to consider the dependence of log F7 on log x. In logarithmic 
scale the angle formed by the tangent to the curve log Fy(log x) to the axis log F 7 = 0 
changes monotonically, tending downward to a value of 2/3 as log x +-~ and to zero as 
log x § + ~. From this and Eq. (2.8) it follows that the electrification current increases 
with increase in liquid temperature, flow rate through the tube, tube radius, length of the 
segment considered L, ion mobility, and ion concentration at the entrance to the tube. The 
dependence of electrification current on the ionic charge value is nonmonotonic. As is 
evident from Fig. i, the electrification current is larger when the impurity electrolyte is 
weak. 

We note that at x L << i, i.e., when the diffusion layer thickness is much less than the 
liquid's Debye radius, calculation by Eq. (2.8) gives the same results as the expression 
for electrification current obtained in [6]. 

Ion concentration profiles (for 7 = 0) are shown in Fig. 2. These show that just as 
in the case el + 0, ~ = 0(i) [6], the space charge is mainly concentrated in a narrow layer 
near the wall. The positive ion concentration profile at some distance from the tube surface 
has a minimum, where the diffusion component of the radial positive ion flux changes sign. 
The migration component is directed along the radius everywhere. This changes in sign of the 
diffusion component of the radial positive ion flux is related to the effect of the tube wall, 
on which the diffusion component compensates the migration one, while far from the tube sur- 
face the migration flux of positive ions leads to a reduction in their concentration in the 
radial direction, i.e., to the appearance of a diffusion flux directed along the radius. 
At 7 = 1 the space charge is also concentrated in a narrow layer near the wall, but the 
positive ion concentration increases monotonically with decrease in distance to the wall. 

We will estimate the maximum length of the tube segment over which the electrification 
current can be calculated with Eq. (2.8). We will term the quantity 6ef(X) , defined by the 
equation 

m a x  [ l l  - -  n+(x, t - -  S e t ( x ) ) h  I1 - -  n_(x, 1 - -  8 r  - -  0 . 0 5 ,  

the dimensionless "effective thickness" of the electrodiffusion boundary layer. Equation 
(2.8) can be used for calculation if 6ef(X L) << i. Figure 3 shows a graph of the function 
Y(x) = 6ef(X)/6, obtained numerically, which for a given value of the parameter 6 allows 
estimation of the "effective thickness" of the electrodiffusion boundary layer. 

. 

2. 
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HYDRODYNAMIC MECHANISM OF SPONTANEOUS RETARDATION 

OF AN ENDOTHERMIC REACTION 

V. I. Naidenov UDC 532.135 

it is known that the steady operating regimes of continuous reactors for endothermic 
reactions are generally stable. This is true if the velocity of the reacting mixture is not 
dependent on temperature and concentration. However, as was shown in [2-4], allowing for 
the dependence of the viscosity of the fluid and, thus, the flow velocity on the governing 
factors of the process (temperature, degree of conversion) leads to qualitative changes in 
the processes of chemical conversion, heat and mass transfer, and motion. The studies [5-7] 
examined nonlinear effects in media in the case of volumetric heat adsorption, these effects 
having been due to the temperature dependence of the thermal conductivity and the capacity 
of the heat sink. 

Here we describe the hydrodynamic mechanism of spontaneous retardation of an endothermic 
reaction occurring in a moving homogeneous fluid. It should be noted that the results ob- 
tained are also valid for other manufacturing processes which involve the motion of a fluid 
with variable viscosity. 

We will examine the laminar flow of a viscous fluid in a circular tube of radius a and 
length L under the influence of an applied pressure gradient p. For simplicity, we will 
assume that there is no heat transfer through the tube wall and that an endothermic reaction 
with an activation energy E 2 and a thermal effect q is occurring in the fluid. We further 
assume that the absolute viscosity of the fluid is determined by the Arrhenius dependence 
on absolute temperature 

V = ~to e x p  �9 r To ~ ' 

where ~0 and T O are the viscosity and temperature of the fluid at the inlet; Ez, activation 
energy for viscous flow; R, gas constant. 

Assuming the Reynolds number to be small (Re = Qp/naB0),we use a hydraulic approxima- 
tion of the equations of motion and heat transfer 

- -h- i'T'-'~o, O (I) 
p = 8P.oe - , __ 

g a  4 

E2 2 E l f  1 1 \ 
d T Q i~ o O '-~ t -"f -~o ) d--i" + ( T - - T o ) = - -  cl e nT"+ 

~cp ~i2a6pCp @ ) 

where Q is the fluid flow rate; p and Cp are the density and specific heat of the fluid. 
System (i) in essence describes the processes of motion and heat transfer in an ideal- 
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